Department of Health Seal

TGM for the Implementation of the Hawai'i State Contingency Plan
Section 11.1
SAMPLE CONTAINERS

11.1 SAMPLE CONTAINERS

Recommended sample containers for soil are presented in Table 11-A in the Appendix 11-A, while Table 11-B in the Appendix 11-B present the recommended sample containers for groundwater. The sample volumes for the containers listed in the tables represent the recommended size of container. More than one sample container may be required for the associated parameter and method. If soil or groundwater samples are to be analyzed for multiple contaminants, the sample volumes listed in the tables will require adjustment. Always consult with the laboratory when planning fieldwork to ensure that the proper sample containers and preservatives are used and sufficient sample mass/volume is collected for all intended analyses.

11.1.1 Soil Sample Containers

The types of sample containers used for the collection of soil samples is dependent upon the characteristics of media to be sampled as well as the specific analysis to be performed. Other factors, such as the anticipated concentrations of contaminants and the desired reporting limits are also important to consider when selecting appropriate soil sample containers.

In general, soil sample containers may be grouped into the following three broad categories: (1) non-volatile soil sample containers, (2) volatile soil sample containers, and (3) Multi-Increment soil sample containers (note that Multi-Increment samples may include both non-volatile and volatile analysis).

11.1.1.1 Non-Volatile Soil Sample Containers

Soil samples for non-volatile analysis are typically collected in wide-mouth glass jars sealed with Teflon-lined caps. Various volumes of wide-mouth glass jars, ranging from 2 ounces to 16 ounces, are employed in soil sample collection and are available as certified pre-cleaned prior to shipment to the end user. During sample collection, the soil is transferred directly from the sampling device (e.g., split-spoon sampler or acrylic tube liner) to the glass jar, which is sealed with a Teflon-lined cap.

Soil samples for non-volatile analysis may also be collected in stainless steel or brass tubes sealed with Teflon tape and plastic end caps, or in some cases in plastic bags. The stainless steel or brass tubes are typically 6 inches in length and vary between 1.5 and 3 inches or greater in diameter. The tubes are typically placed as a liner in a split spoon sampler driven by a drill rig. During sample collection, the soil is retained in the tubes following retrieval from the sampler, and Teflon tape and a plastic end cap is immediately placed over each end of the tube.

11.1.1.2 Volatile Soil Sample Containers

United States Environmental Protection Agency (USEPA) Method 5035 describes a closed-system purge-and-trap process for the analysis of volatile organic compounds in solid materials (e.g., soils, sediments, and solid waste) (USEPA, 1997g), which was subsequently updated with Method 5035A (USEPA, 2002h). The method is designed for use on samples containing low levels of VOCs, but procedures are also provided for collecting and preparing solid samples containing high concentrations of VOCs and for oily wastes. The procedures in EPA Method 5035 and 5035A may be used in conjunction with any appropriate determinative gas chromatographic procedure, including, but not limited to, EPA Methods 8015, 8021, and 8260.

Soil samples for volatile analysis can be collected using an EnCore® sampler, TerraCore® sampler, or similar sampling device capable of collecting a known mass of soil, approximately 5 grams, for preservation and analysis. The soil aliquot in the sampler may be chemically preserved by placing it into a glass jar containing a known quantity of preservative (see Subsection 11.2.3 for additional discussion of volatile soil sample collection).

The use of glass jars without the use of chemical preservatives when collecting soil samples for volatile analysis is not recommended.

The use of stainless steel or brass tubes when collecting soil samples for volatile analysis is not recommended.

11.1.1.3 Multi-Increment Soil Sample Containers

The collection of a 30- to 50-increment sample can result in approximately 500 to 2,000 grams of soil (i.e., the Multi-Increment sample) depending upon the mass of each increment. The sample container for a Multi-Increment sample must be large enough to accommodate this mass. For non-volatile analysis, a common method for collecting a Multi-Increment bulk sample is to place each increment into a dedicated, disposal plastic bag (such as a 2 gallon zip top or a heavy duty trash compactor bag) as each increment is collected. The bag may be sealed, labeled and submitted directly to the laboratory for sub-sampling and analysis. There is a potential for some semi-volatile organic compounds (SVOCs), in particular, phthalates, to be transferred from plastic bags to samples, particularly if the soil has coarse or sharp particles that may abrade the bag surface. Therefore, when collecting Multi-Increment samples, the sampling team should consider the use of clean wide-mouth glass jars to collect and/or transport samples to be analyzed for SVOCs. These types of jars are available commercially and from Hawai`i-based analytical laboratories.

As discussed in Section 4.2.1, the Multi-Increment sample for non-volatile analysis may be sub-sampled in the field if an appropriate Standard Operating Procedure (SOP) has been developed for field sub-sampling and included in the SAP. In this case, the Multi-Increment sample would be collected in a dedicated, disposable plastic bag or wide-mouth jar, which is transferred to a pan for sieving and sub-sampling. The sub-sample is collected into a plastic zip top bag or glass jar and submitted to the laboratory for analysis. Field sub-sampling should follow procedures similar to those employed by the analytical laboratory as described in Section 4.2.2. Field sub-sampling of the Multi-Increment sample to collect a representative sub-sample may be difficult to perform due to conditions commonly encountered at field sites in Hawai`i (e.g., trade winds and/or rain). Laboratory sub-sampling to collect a representative sub-sample is generally preferable due to the controlled environmental conditions. Whenever samples are sub-sampled in the field, fully document the procedures, equipment, training requirements, and QA/QC measures employed during field sub-sampling in the SAP.

For laboratory sub-sampling, the most common QA/QC measure includes the collection of sub-sampling replicates (typically triplicates) to assess the error introduced by the sub-sampling routine. See discussion of replicates for laboratory sub-sampling in Section 10.7.6.

The recommended approach for the collection of Multi-Increment soil samples intended for volatile analysis is discussed in Section 4.2.7.

11.1.2 Water Sample Containers

The type of sample container used for collecting surface water or groundwater samples is dependent upon the specific analysis to be performed. Other factors, such as the anticipated concentrations of contaminants, the desired reporting limits, and the presence of free product are also important to consider when selecting appropriate water sample containers.

In general, water sample containers may be grouped into the following two broad categories: (1) non-volatile water sample containers, and (2) volatile water sample containers.

11.1.2.1 Non-Volatile Water Sample Containers

Water samples for organic non-volatile analysis are typically collected in 1 liter amber glass jars without the use of chemical preservatives. When collecting groundwater samples, fill the water sample containers by directing the outlet of the sampling device (i.e., pump tubing or bailer) toward the top and side of the sample container to allow the water to run down the inside of the bottle. Avoid agitation and the creation of bubbles when collecting water samples. To prevent cross contamination, avoid contacting the interior or top of the sample containers with either the sampling device or gloved hands.

Water samples for dissolved metals analysis are collected in 250 milliliter (mL) plastic bottles and preserved with nitric acid to a pH less than 2. Dissolved metals analysis also requires filtration prior to collection as discussed in Section 6.

11.1.2.2 Volatile Water Sample Containers

Water samples for volatile analysis are typically collected in 40 mL glass jars with septum-sealed screw caps and preserved with hydrochloric acid (HCl) to a pH less than 2. During sample collection, the screw caps should be carefully placed on the jars and sealed with zero headspace. When collecting groundwater samples for volatile analysis, fill the 40 mL jars by directing the outlet of the sampling device toward the top and side of the sample container to allow the water to run down the inside of the bottle. Adjust the flow rate of the water sampling device so that it does not cause the jars to rapidly overflow, causing loss of VOCs, sample volume, or any sample preservative. Avoid agitation and the creation of bubbles when collecting volatile water samples to prevent the loss of volatile constituents. To prevent cross contamination, avoid contacting the interior or top of the sample containers with either the sampling device or gloved hands.

The preservative HCl may react (effervesce) with turbid water containing calcareous particulates, resulting in a loss of volatile constituents. If a strong reaction is observed when filling the 40 mL jars containing HCl, collect the water samples for volatile analysis as unpreserved samples and note on the chain-of-custody. The collection of unpreserved water samples reduces the hold time of 14 days down to 7 days.